

Encyclopedia of
Computer science
and technology

Revised Edition

harry henderson

ENCYCLOPEDIA OF COMPUTER SCIENCE and TECHNOLOGY, Revised Edition

Copyright © 2009, 2004, 2003 by Harry Henderson

All rights reserved. No part of this book may be reproduced or utilized in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any

information storage or retrieval systems, without permission in writing from the publisher.
For information contact:

Facts On File, Inc.
An imprint of Infobase Publishing

132 West 31st Street
New York NY 10001

Library of Congress Cataloging-in-Publication Data

Henderson, Harry, 1951–
 Encyclopedia of computer science and technology / Harry Henderson.—Rev. ed.

 p. cm.
 Includes bibliographical references and index.

 ISBN-13: 978-0-8160-6382-6
 ISBN-10: 0-8160-6382-6

 1. Computer science—Encyclopedias. 2. Computers—Encyclopedias. I. Title.
 QA76.15.H43 2008

004.03—dc22 2008029156

Facts On File books are available at special discounts when purchased in bulk quantities
for businesses, associations, institutions, or sales promotions. Please call our Special Sales

Department in New York at (212) 967-8800 or (800) 322-8755.

You can find Facts On File on the World Wide Web at http://www.factsonfile.com

Text design by Erika K. Arroyo
Cover design by Salvatore Luongo

lllustrations by Sholto Ainslie
Photo research by Tobi Zausner, Ph.D.

Printed in the United States of America

VB Hermitage 10 9 8 7 6 5 4 3 2 1

This book is printed on acid-free paper and contains
30 percent postconsumer recycled content.

In memory of my brother,

Bruce Henderson,

who gave me my first opportunity to explore

personal computing almost 30 years ago.

Acknowledgments
iv

introduction to the Revised Edition
v

A–Z Entries
1

Appendix I
Bibliographies and Web Resources

527

Appendix II
A Chronology of Computing

529

Appendix III
Some Significant Awards

542

Appendix IV
Computer-Related Organizations

553

Index
555

Contents

iv

I wish to acknowledge with gratitude the patient and thorough
management of this project by my editor, Frank K. Darmstadt. I can

scarcely count the times he has given me encouragement and nudges
as needed. I also wish to thank Tobi Zausner, Ph.D., for her ability and
efficiency in obtaining many of the photos for this book.

Acknowledgments

�

Chances are that you use at least one computer or com-
puter-related device on a daily basis. Some are obvi-

ous: for example, the personal computer on your desk or at
your school, the laptop, the PDA that may be in your brief-
case. Other devices may be a bit less obvious: the “smart”
cell phone, the iPod, a digital camera, and other essentially
specialized computers, communications systems, and data
storage systems. Finally, there are the “hidden” computers
found in so many of today’s consumer products—such as
the ones that provide stability control, braking assistance,
and navigation in newer cars.

Computers not only seem to be everywhere, but also
are part of so many activities of daily life. They bring
together willing sellers and buyers on eBay, allow you
to buy a book with a click on the Amazon.com Web site,
and of course put a vast library of information (of vary-
ing quality) at your fingertips via the World Wide Web.
Behind the scenes, inventory and payroll systems keep
businesses running, track shipments, and more problem-
atically, keep track of where people go and what they
buy. Indeed, the infrastructure of modern society, from
water treatment plants to power grids to air-traffic con-
trol, depends on complex software and systems.

Modern science would be inconceivable without com-
puters to gather data and run models and simulations.
Whether bringing back pictures of the surface of Mars or
detailed images to guide brain surgeons, computers have
greatly extended our knowledge of the world around us and
our ability to turn ideas into engineering reality.

The revised edition of the Facts On File Encyclopedia of
Computer Science and Technology provides overviews and
important facts about these and dozens of other applica-
tions of computer technology. There are also many entries
dealing with the fundamental concepts underlying com-
puter design and programming, the Internet, and other
topics such as the economic and social impacts of the infor-
mation society.

The book’s philosophy is that because computer tech-
nology is now inextricably woven into our everyday lives,
anyone seeking to understand its impact must not only
know how the bits flow, but also how the industry works
and where it may be going in the years to come.

New and Enhanced Coverage

The need for a revised edition of this encyclopedia becomes
clear when one considers the new products, technologies,
and issues that have appeared in just a few years. (Consider
that at the start of the 2000 decade, Ajax was still only a
cleaning product and blog was not even a word.)

The revised edition includes almost 180 new entries,
including new programming languages (such as C# and
Ruby), software development and Web design technologies
(such as the aforementioned Ajax, and Web services), and
expanded coverage of Linux and other open-source soft-
ware. There are also entries for key companies in software,
hardware, and Web commerce and services.

Many other new entries reflect new ways of using infor-
mation technology and important social issues that arise
from such use, including the following:

• � blogging and newer forms of online communication
that are influencing journalism and political cam-
paigns

• � other ways for users to create and share content, such
as file-sharing networks and YouTube

• � new ways to share and access information, such as
the popular Wikipedia

• � the ongoing debate over who should pay for Internet
access, and whether service providers or governments
should be able to control the Web’s content

• � the impact of surveillance and data mining on privacy
and civil liberties

Intr oduction to the
Re vised Edition

vi        Introduction to the Revised Edition

• � threats to data security, ranging from identity thieves
and “phishers” to stalkers and potential “cyberterror-
ists”

• � the benefits and risks of social networking sites (such
as MySpace)

• � the impact of new technology on women and minori-
ties, young people, the disabled, and other groups

Other entries feature new or emerging technology, such
as

• � portable media devices (the iPod and its coming suc-
cessors)

• � home media centers and the gradual coming of the
long-promised “smart house”

• � navigation and mapping systems (and their integra-
tion with e-commerce)

• � how computers are changing the way cars, appliances,
and even telephones work

• � “Web 2.0”—and beyond

Finally, we look at the farther reaches of the imagina-
tion, considering such topics as

• � nanotechnology

• � quantum computing

• � science fiction and computing

• � philosophical and spiritual aspects of computing

• � the ultimate “technological singularity”

In addition to the many new entries, all existing entries
have been carefully reviewed and updated to include the
latest facts and trends.

Getting the Most Out of This Book

This encyclopedia can be used in several ways: for example,
you can look up specific entries by referring from topics in
the index, or simply by browsing. The nearly 600 entries
in this book are intended to read like “mini-essays,” giving
not just the bare definition of a topic, but also developing its
significance for the use of computers and its relationship to
other topics. Related topics are indicated by small capital
letters. At the end of each entry is a list of books, articles,
and/or Web sites for further exploration of the topic.

Every effort has been made to make the writing acces-
sible to a wide range of readers: high school and college
students, computer science students, working computer
professionals, and adults who wish to be better informed
about computer-related topics and issues.

The appendices provide further information for refer-
ence and exploration. They include a chronology of sig-
nificant events in computing; a listing of achievements in
computing as recognized in major awards; an additional
bibliography to supplement that given with the entries;
and finally, brief descriptions and contact information for
some important organizations in the computer field.

This book can also be useful to obtain an overview of
particular areas in computing by reading groups of related
entries. The following listing groups the entries by cat-
egory.

AI and Robotics
artificial intelligence
artificial life
Bayesian analysis
Breazeal, Cynthia
Brooks, Rodney
cellular automata
chess and computers
cognitive science
computer vision
Dreyfus, Hubert L.
Engelberger, Joseph
expert systems
Feigenbaum, Edward
fuzzy logic
genetic algorithms
handwriting recognition
iRobot Corporation
knowledge representation
Kurzweil, Raymond C.
Lanier, Jaron
Maes, Pattie
McCarthy, John
Minsky, Marvin Lee
MIT Media Lab
natural language processing
neural interfaces
neural network
Papert, Seymour
pattern recognition
robotics
singularity, technological
software agent
speech recognition and synthesis
telepresence
Weizenbaum, Joseph

Business and E-Commerce Applications
Amazon.com
America Online (AOL)
application service provider (ASP)
application software
application suite
auctions, online
auditing in data processing
banking and computers
Bezos, Jeffrey P.
Brin, Sergey
business applications of computers
Craigslist
customer relationship management (CRM)
decision support system
desktop publishing (DTP)

Introduction to the Revised Edition        vii

enterprise computing
Google
groupware
home office
management information system (MIS)
middleware
office automation
Omidyar, Pierre
online advertising
online investing
online job searching and recruiting
optical character recognition (OCR)
Page, Larry
PDF (Portable Document Format)
personal health information management
personal information manager (PIM)
presentation software
project management software
smart card
spreadsheet
supply chain management
systems analyst
telecommuting
text editor
transaction processing
trust and reputation systems
word processing
Yahoo!

Computer Architecture
addressing
arithmetic logic unit (ALU)
bits and bytes
buffering
bus
cache
computer engineering
concurrent programming
cooperative processing
Cray, Seymour
device driver
distributed computing
embedded system
grid computing
parallel port
reduced instruction set computer (RISC)
serial port
supercomputer
USB (Universal Serial Bus)

Computer Industry
Adobe Systems
Advanced Micro Devices (AMD)
Amdahl, Gene Myron
Apple Corporation
Bell, C. Gordon
Bell Laboratories
benchmark

certification of computer professionals
Cisco Systems
compatibility and portability
computer industry
Dell, Inc.
education in the computer field
employment in the computer field
entrepreneurs in computing
Gates, William III (Bill)
Grove, Andrew
IBM
Intel Corporation
journalism and the computer industry
marketing of software
Microsoft Corporation
Moore, Gordon E.
Motorola Corporation
research laboratories in computing
standards in computing
Sun Microsystems
Wozniak, Steven

Computer Science Fundamentals
Church, Alonzo
computer science
computability and complexity
cybernetics
hexadecimal system
information theory
mathematics of computing
measurement units used in computing
Turing, Alan Mathison
von Neumann, John
Wiener, Norbert

Computer Security and Risks
authentication
backup and archive systems
biometrics
computer crime and security
computer forensics
computer virus
copy protection
counterterrorism and computers
cyberstalking and harassment
cyberterrorism
Diffie, Bailey Whitfield
disaster planning and recovery
encryption
fault tolerance
firewall
hackers and hacking
identity theft
information warfare
Mitnick, Kevin D.
online frauds and scams
phishing and spoofing
RFID (radio frequency identification)

viii        Introduction to the Revised Edition

risks of computing
Spafford, Eugene H.
spam
spyware and adware
Y2K Problem

Databases
CORBA (Common Object Request Broker Architecture)
data conversion
data dictionary
data mining
data security
data warehouse
database administration
database management system (DBMS)
database
hashing
information retrieval
Oracle Corporation
SAP
SOAP (Simple Object Access Protocol)
SQL

Data Communications and Networking
(General)
bandwidth
Bluetooth
broadband
cable modem
client-server computing
data acquisition
data communications
data compression
DSL (digital subscriber line)
error correction
fiber optics
file server
file transfer protocols
FireWire
local area network (LAN)
modem
network
satellite Internet service
Shannon, Claude E
synchronous/asynchronous operation
telecommunications
terminal
Wifi
wireless computing

Data Types and Algorithms
algorithm
array
binding
bitwise operations
Boolean operators
branching statements
characters and strings

class
constants and literals
data
data abstraction
data structures
data types
enumerations and sets
heap (data structure)
Knuth, Donald
list processing
numeric data
operators and expressions
sorting and searching
stack
tree
variable

Development of Computers
Aiken, Howard
analog and digital
analog computer
Atanasoff, John Vincent
Babbage, Charles
calculator
Eckert, J. Presper
history of computing
Hollerith, Hermann
Mauchly, John William
mainframe
minicomputer
Zuse, Konrad

Future Computing
bioinformation
Dertouzos, Michael
Joy, Bill
molecular computing
nanotechnology
quantum computing
trends and emerging technologies
ubiquitous computing

Games, Graphics, and Media
animation, computer
art and the computer
bitmapped image
codec
color in computing
computer games
computer graphics
digital rights management (DRM)
DVR (digital video recording)
Electronic Arts
film industry and computing
font
fractals in computing
game consoles
graphics card

Introduction to the Revised Edition        ix

graphics formats
graphics tablet
image processing
media center, home
multimedia
music and video distribution, online
music and video players, digital
music, computer
online gambling
online games
photography, digital
podcasting
PostScript
RSS (real simple syndication)
RTF (Rich Text Format)
sound file formats
streaming (video or audio)
Sutherland, Ivan Edward
video editing, digital
YouTube

Hardware Components
CD-ROM and DVD-ROM
flash drive
flat-panel display
floppy disk
hard disk
keyboard
monitor
motherboard
networked storage
optical computing
printers
punched cards and paper tape
RAID (redundant array of inexpensive disks)
scanner
tape drives

Internet and World Wide Web
active server pages (ASP)
Ajax (Asynchronous JavaScript and XML)
Andreessen, Marc
Berners-Lee, Tim
blogs and blogging
bulletin board systems (BBS)
Bush, Vannevar
cascading style sheets (CSS)
Cerf, Vinton G.
certificate, digital
CGI (common gateway interface)
chat, online
chatterbots
conferencing systems
content management
cookies
Cunningham, Howard (Ward)
cyberspace and cyber culture
digital cash (e-commerce)
digital convergence

domain name system (DNS)
eBay
e-books and digital libraries
e-commerce
e-mail
file-sharing and P2P networks
flash and smart mob
HTML, DHTML, and XHTML
hypertext and hypermedia
Internet
Internet applications programming
Internet cafes and “hot spots”
Internet organization and governance
Internet radio
Internet service provider (ISP)
Kleinrock, Leonard
Licklider, J. C. R.
mashups
Netiquette
netnews and newsgroups
online research
online services
portal
Rheingold, Howard
search engine
semantic Web
social networking
TCP/IP
texting and instant messaging
user-created content
videoconferencing
virtual community
Wales, Jimmy
Web 2.0 and beyond
Web browser
Web cam
Web filter
Webmaster
Web page design
Web server
Web services
wikis and Wikipedia
World Wide Web
XML

Operating Systems
demon
emulation
file
input/output (I/O)
job control language
kernel
Linux
memory
memory management
message passing
microsoft windows
MS-DOS
multiprocessing

�        Introduction to the Revised Edition

multitasking
operating system
OS X
system administrator
regular expression
Ritchie, Dennis
shell
Stallman, Richard
Torvalds, Linus
UNIX

Other Applications
bioinformatics
cars and computing
computer-aided design and manufacturing (CAD/CAM)
computer-aided instruction (CAI)
distance education
education and computers
financial software
geographical information systems (GIS)
journalism and computers
language translation software
law enforcement and computers
legal software
libraries and computing
linguistics and computing
map information and navigation systems
mathematics software
medical applications of computers
military applications of computers
scientific computing applications
smart buildings and homes
social sciences and computing
space exploration and computers
statistics and computing
typography, computerized
workstation

Personal Computer Components
BIOS (Basic Input-Output System)
boot sequence
chip
chipset
clock speed
CPU (central processing unit)
green PC
IBM PC
laptop computer
microprocessor
personal computer (PC)
PDA (personal digital assistant)
plug and play
smartphone
tablet PC

Program Language Concepts
authoring systems
automatic programming
assembler

Backus-Naur Form (BNF)
compiler
encapsulation
finite state machine
flag
functional languages
interpreter
loop
modeling languages
nonprocedural languages
ontologies and data models
operators and expressions
parsing
pointers and indirection
procedures and functions
programming languages
queue
random number generation
real-time processing
recursion
scheduling and prioritization
scripting languages
Stroustrup, Bjarne
template
Wirth, Niklaus

Programming Languages
Ada
Algol
APL
awk
BASIC
C
C#
C++
Cobol
Eiffel
Forth
FORTRAN
Java
JavaScript
LISP
LOGO
Lua
Pascal
Perl
PHP
PL/1
Prolog
Python
RPG
Ruby
Simula
Tcl
Smalltalk
VBScript

Social, Political, and Legal Issues
anonymity and the Internet
censorship and the Internet

Introduction to the Revised Edition        xi

computer literacy
cyberlaw
developing nations and computing
digital divide
disabled persons and computing
e-government
electronic voting systems
globalization and the computer industry
government funding of computer research
identity in the online world
intellectual property and computing
Lessig, Lawerence
net neutrality
philosophical and spiritual aspects of computing
political activism and the Internet
popular culture and computing
privacy in the digital age
science fiction and computing
senior citizens and computing
service-oriented architecture (SOA)
social impact of computing
Stoll, Clifford
technology policy
women and minorities in computing
young people and computing

Software Development and Engineering
applet
application program interface (API)
bugs and debugging
CASE (computer-aided software engineering)
design patterns
Dijkstra, Edsger
documentation of program code
documentation, user
document model
DOM (document Object Model)
error handling
flowchart
Hopper, Grace Murray
information design

internationalization and localization
library, program
macro
Microsoft .NET
object-oriented programming (OOP)
open source movement
plug-in
programming as a profession
programming environment
pseudocode
quality assurance, software
reverse engineering
shareware
Simonyi, Charles
simulation
software engineering
structured programming
systems programming
virtualization

User Interface and Support
digital dashboard
Engelbart, Doug
ergonomics of computing
haptic interface
help systems
installation of software
Jobs, Steven Paul
Kay, Alan
Macintosh
mouse
Negroponte, Nicholas
psychology of computing
technical support
technical writing
touchscreen
Turkle, Sherry
ser groups
user interface
virtual reality
wearable computers

A

�

abstract data type  See data abstraction.

active server pages  (ASP)
Many users think of Web pages as being like pages in
a book, stored intact on the server, ready to be flipped
through with the mouse. Increasingly, however, Web pages
are dynamic—they do not actually exist until the user
requests them, and their content is determined largely by
what the user requests. This demand for greater interactiv-
ity and customization of Web content tends to fall first on
the server (see client-server computing and Web server)
and on “server side” programs to provide such functions as
database access. One major platform for developing Web
services is Microsoft’s Active Server Pages (ASP).

In ASP programmers work with built-in objects that rep-
resent basic Web page functions. The RecordSet object can
provide access to a variety of databases; the Response object
can be invoked to display text in response to a user action;
and the Session object provides variables that can be used
to store information about previous user actions such as
adding items to a shopping cart (see also cookies).

Control of the behavior of the objects within the Web
page and session was originally handled by code written
in a scripting language such as VBScript and embedded
within the HTML text (see html and VBScript). How-
ever, ASP .NET, based on Microsoft’s latest Windows
class libraries (see Microsoft .net) and introduced in
2002, allows Web services to be written in full-fledged
programming languages such as Visual Basic .NET and

C#, although in-page scripting can still be used. This can
provide several advantages: access to software develop-
ment tools and methodologies available for established
programming languages, better separation of program
code from the “presentational” (formatting) elements of
HTML, and the speed and security associated with com-
piled code. ASP .NET also emphasizes the increasingly
prevalent Extensible Markup Language (see xml) for orga-
nizing data and sending those data between objects using
Simple Object Access Protocol (see soap).

Although ASP .NET was designed to be used with
Microsoft’s Internet Information Server (IIS) under Win-
dows, the open-source Mono project (sponsored by Novell)
implements a growing subset of the .NET classes for use on
UNIX and Linux platforms using a C# compiler with appro-
priate user interface, graphics, and database libraries.

An alternative (or complementary) approach that has
become popular in recent years reduces the load on the
Web server by avoiding having to resend an entire Web
page when only a small part actually needs to be changed.
See Ajax (asynchronous JavaScript and XML).

Further Reading
Bellinaso, Marco. ASP .NET 2.0 Website Programming: Problem—

Design—Solution. Indianapolis: Wiley Publishing, 2006.
Liberty, Jesse, and Dan Hurwitz. Programming ASP .NET. 3rd ed.

Sebastapol, Calif.: O’Reilly, 2005.
McClure, Wallace B., et al. Beginning Ajax with ASP .NET. India-

napolis: Wiley Publishing, 2006.
Mono Project. Available online. URL: http://www.mono-project.

com/Main_Page. Accessed April 10, 2007.

Ada
Starting in the 1960s, the U.S. Department of Defense
(DOD) began to confront the growing unmanageability of
its software development efforts. Whenever a new applica-
tion such as a communications controller (see embedded
system) was developed, it typically had its own special-
ized programming language. With more than 2,000 such
languages in use, it had become increasingly costly and
difficult to maintain and upgrade such a wide variety of
incompatible systems. In 1977, a DOD working group began
to formally solicit proposals for a new general-purpose pro-
gramming language that could be used for all applications
ranging from weapons control and guidance systems to bar-
code scanners for inventory management. The winning lan-
guage proposal eventually became known as Ada, named
for 19th-century computer pioneer Ada Lovelace see also
Babbage, Charles). After a series of reviews and revisions
of specifications, the American National Standards Institute
officially standardized Ada in 1983, and this first version of
the language is sometimes called Ada-83.

Language Features
In designing Ada, the developers adopted basic language
elements based on emerging principles (see structured
programming) that had been implemented in languages
developed during the 1960s and 1970s (see Algol and
Pascal). These elements include well-defined control
structures (see branching statements and loop) and
the avoidance of the haphazard jump or “goto” directive.

Ada combines standard structured language features
(including control structures and the use of subprograms)
with user-definable data type “packages” similar to the
classes used later in C++ and other languages (see class
and object-oriented programming). As shown in this
simple example, an Ada program has a general form similar
to that used in Pascal. (Note that words in boldface type are
language keywords.)

with Ada.Text_IO; use Ada.Text_IO;
procedure Get_Name is
Name : String (1..80);
Length : Integer;

begin
Put (“What is your first name?”);
Get_Line (Name, Length);
New_Line;
Put (“Nice to meet you,”);
Put (Name (1..Length));
end Get_Name;

The first line of the program specifies what “packages”
will be used. Packages are structures that combine data
types and associated functions, such as those needed for
getting and displaying text. The Ada.Text.IO package, for
example, has a specification that includes the following:

package Text_IO is
type File_Type is limited private;
type File_Mode is (In_File, Out_File, Append_File);

procedure Create (File : in out File_Type;
Mode : in File_Mode := Out_File;
Name : in String := “”);
procedure Close (File : in out File_Type);
procedure Put_Line (File : in File_Type;
Item : in String);
procedure Put_Line (Item : in String);
end Text_IO;

The package specification begins by setting up a data
type for files, and then defines functions for creating and
closing a file and for putting text in files. As with C++
classes, more specialized packages can be derived from
more general ones.

In the main program Begin starts the actual data pro-
cessing, which in this case involves displaying a message
using the Put function from the Ada.Text.IO function and
getting the user response with Get_Line, then using Put
again to display the text just entered.

Ada is particularly well suited to large, complex software
projects because the use of packages hides and protects the
details of implementing and working with a data type. A
programmer whose program uses a package is restricted to
using the visible interface, which specifies what parameters
are to be used with each function. Ada compilers are care-
fully validated to ensure that they meet the exact specifica-
tions for the processing of various types of data (see data
types), and the language is “strongly typed,” meaning that
types must be explicitly declared, unlike the case with C,
where subtle bugs can be introduced when types are auto-
matically converted to make them compatible.

Because of its application to embedded systems and real-
time operations, Ada includes a number of features designed
to create efficient object (machine) code, and the language
also makes provision for easy incorporation of routines writ-
ten in assembly or other high-level languages. The latest offi-
cial version, Ada 95, also emphasizes support for parallel
programming (see multiprocessing). The future of Ada is
unclear, however, because the Department of Defense no lon-
ger requires use of the language in government contracts.

Ada development has continued, particularly in areas
including expanded object-oriented features (including
support for interfaces with multiple inheritance); improved
handling of strings, other data types, and files; and refine-
ments in real-time processing and numeric processing.

Further Reading
“Ada 95 Lovelace Tutorial.” Available online. URL: http://www.

adahome.com/Tutorials/Lovelace/lovelace.htm. Accessed April
18, 2008.

Ada 95 On-line Reference Manual (hypertext) Available online.
URL: http://www.adahome.com/Resources/refs/rm95.html.
Accessed April 18, 2008.

Barnes, John. Programming in Ada 2005 with CD. New York: Pear-
son Education, 2006.

Dale, Nell, and John W. McCormick. Ada Plus Data Structures: An
Object-Oriented Approach. 2nd ed. Sudbury, Mass.: Jones and
Bartlett, 2006.

�        Ada

addressing
In order for computers to manipulate data, they must be
able to store and retrieve it on demand. This requires a way
to specify the location and extent of a data item in memory.
These locations are represented by sequential numbers, or
addresses.

Physically, a modern RAM (random access memory)
can be visualized as a grid of address lines that crisscross
with data lines. Each line carries one bit of the address,
and together, they specify a particular location in memory
(see memory). Thus a machine with 32 address lines can
handle up to 32 bits, or 4 gigabytes (billions of bytes) worth
of addresses. However the amount of memory that can be
addressed can be extended through indirect addressing,
where the data stored at an address is itself the address of
another location where the actual data can be found. This
allows a limited amount of fast memory to be used to point
to data stored in auxiliary memory or mass storage thus
extending addressing to the space on a hard disk drive.

Some of the data stored in memory contains the actual
program instructions to be executed. As the processor
executes program instructions, an instruction pointer
accesses the location of the next instruction. An instruc-
tion can also specify that if a certain condition is met the
processor will jump over intervening locations to fetch
the next instruction. This implements such control struc-
tures as branching statements and loops.

Addressing in Programs
A variable name in a program language actually references
an address (or often, a range of successive addresses, since
most data items require more than one byte of storage). For
example, if a program includes the declaration

Int Old_Total, New_Total;

when the program is compiled, storage for the variables
Old_Total and New_Total is set aside at the next available
addresses. A statement such as

New_Total = 0;

is compiled as an instruction to store the value 0 in the
address represented by New_Total. When the program later
performs a calculation such as:

New_Total = Old_Total + 1;

the data is retrieved from the memory location designated
by Old_Total and stored in a register in the CPU, where 1 is
added to it, and the result is stored in the memory location
designated by New_Total.

Although programmers don’t have to work directly with
address locations, programs can also use a special type of
variable to hold and manipulate memory addresses for more
efficient access to data (see pointers and indirection).

Further Reading
“Computer Architecture Tutorial.” Available online. URL: http://

www.cs.iastate.edu/~prabhu/Tutorial/title.html. Accessed April
10, 2007.

Murdocca, Miles J., and Vincent P. Heuring. Principles of Computer
Architecture. Upper Saddle River, N.J.: Prentice Hall, 2000.

Adobe Systems
Adobe Systems (NASDAQ symbol ADBE) is best known for
products relating to the formatting, printing, and display of
documents. Founded in 1982 by John Warnock and Charles
Geschke, the company is named for a creek near one of their
homes.

Adobe’s first major product was a language that describes
the font sizes, styles, and other formatting needed to print
pages in near-typeset quality (see PostScript). This was a
significant contribution to the development of software for
document creation (see desktop publishing), particularly on
the Apple Macintosh, starting in the later 1980s. Building on
this foundation, Adobe developed high-quality digital fonts
(called Type 1). However, Apple’s TrueType fonts proved to
be superior in scaling to different sizes and in the precise
control over the pixels used to display them. With the licens-
ing of TrueType to Microsoft for use in Windows, TrueType
fonts took over the desktop, although Adobe Type 1 remained
popular in commercial typesetting applications. Finally, in
the late 1990s Adobe, together with Microsoft, established a
new font format called OpenType, and by 2003 Adobe had
converted all of its Type 1 fonts to the new format.

Adobe’s Portable Document Format (see pdf) has become
a ubiquitous standard for displaying print documents. Adobe
greatly contributed to this development by making a free
Adobe Acrobat PDF reader available for download.

Virtual memory uses indirect addressing. When a program requests
data from memory, the address is looked up in a table that keeps
track of each block’s actual location. If the block is not in RAM, one
or more blocks in RAM are copied to the swap file on disk, and the
needed blocks are copied from disk into the vacated area in RAM.

Adobe Systems        �

Image Processing Software
In the mid-1980s Adobe’s founders realized that they could
further exploit the knowledge of graphics rendition that they
had gained in developing their fonts. They began to create
software that would make these capabilities available to illus-
trators and artists as well as desktop publishers. Their first
such product was Adobe Illustrator for the Macintosh, a vec-
tor-based drawing program that built upon the graphics capa-
bilities of their PostScript language.

In 1989 Adobe introduced Adobe Photoshop for the
Macintosh. With its tremendous variety of features, the
program soon became a standard tool for graphic artists.
However, Adobe seemed to have difficulty at first in antici-
pating the growth of desktop publishing and graphic arts
on the Microsoft Windows platform. Much of that market
was seized by competitors such as Aldus PageMaker and
QuarkXPress. By the mid-1990s, however, Adobe, fueled by
the continuing revenue from its PostScript technology, had
acquired both Aldus and Frame Technologies, maker of the
popular FrameMaker document design program. Meanwhile
PhotoShop continued to develop on both the Macintosh and
Windows platforms, aided by its ability to accept add-ons
from hundreds of third-party developers (see plug-ins).

Multimedia and the Web
Adobe made a significant expansion beyond document pro-
cessing into multimedia with its acquisition of Macromedia
(with its popular Flash animation software) in 2005 at a cost
of about $3.4 billion. The company has integrated Macrome-
dia’s Flash and Dreamweaver Web-design software into its
Creative Suite 3 (CS3). Another recent Adobe product that
targets Web-based publishing is Digital Editions, which inte-
grated the existing Dreamweaver and Flash software into a
powerful but easy-to-use tool for delivering text content and
multimedia to Web browsers. Buoyed by these developments,
Adobe earned nearly $2 billion in revenue in 2005, about
$2.5 billion in 2006, and $3.16 billion in 2007.

Today Adobe has over 6,600 employees, with its head-
quarters in San Jose and offices in Seattle and San Francisco
as well as Bangalore, India; Ottawa, Canada; and other loca-
tions. In recent years the company has been regarded as a
superior place to work, being ranked by Fortune magazine
as the fifth best in America in 2003 and sixth best in 2004.

Further Reading
“Adobe Advances on Stronger Profit.” Business Week Online, Decem

ber 18, 2006. Available online. URL: http://www.business-
week.com/investor/content/dec2006/pi20061215_986588.
htm. Accessed April 10, 2007.

Adobe Systems Incorporated home page. Available online. URL:
http://www.adobe.com. Accessed April 10, 2007.

“Happy Birthday Acrobat: Adobe’s Acrobat Turns 10 Years Old.”
Print Media 18 (July–August 2003): 21.

Advanced Micro Devices  (AMD)
Sunnyvale, California-based Advanced Micro Devices, Inc.,
(NYSE symbol AMD) is a major competitor in the market
for integrated circuits, particularly the processors that are

at the heart of today’s desktop and laptop computers (see
microprocessor). The company was founded in 1969 by a
group of executives who had left Fairchild Semiconductor.
In 1975 the company began to produce both RAM (mem-
ory) chips and a clone of the Intel 8080 microprocessor.

When IBM adopted the Intel 8080 for its first personal
computer in 1982 (see Intel Corporation and IBM PC),
it required that there be a second source for the chip. Intel
therefore signed an agreement with AMD to allow the latter
to manufacture the Intel 9806 and 8088 processors. AMD
also produced the 80286, the second generation of PC-com-
patible processors, but when Intel developed the 80386 it
canceled the agreement with AMD.

A lengthy legal dispute ensued, with the California
Supreme Court finally siding with AMD in 1991. However,
as disputes continued over the use by AMD of “microcode”
(internal programming) from Intel chips, AMD eventually
used a “clean room” process to independently create func-
tionally equivalent code (see reverse engineering). How-
ever, the speed with which new generations of chips was
being produced rendered this approach impracticable by
the mid-1980s, and Intel and AMD concluded a (largely
secret) agreement allowing AMD to use Intel code and pro-
viding for cross-licensing of patents.

In the early and mid-1990s AMD had trouble keeping up
with Intel’s new Pentium line, but the AMD K6 (introduced
in 1997) was widely viewed as a superior implementation of
the microcode in the Intel Pentium—and it was “pin com-
patible,” making it easy for manufacturers to include it on
their motherboards.

Today AMD remains second in market share to Intel.
AMD’s Athlon, Opteron, Turion, and Sempron processors
are comparable to corresponding Intel Pentium processors,
and the two companies compete fiercely as each introduces
new architectural features to provide greater speed or pro-
cessing capacity.

In the early 2000s AMD seized the opportunity to beat
Intel to market with chips that could double the data band-
width from 32 bits to 64 bits. The new specification stan-
dard, called AMD64, was adopted for upcoming operating
systems by Microsoft, Sun Microsystems, and the develop-
ers of Linux and UNIX kernels. AMD has also matched
Intel in the latest generation of dual-core chips that essen-
tially provide two processors on one chip. Meanwhile,
AMD strengthened its position in the high-end server mar-
ket when, in May 2006, Dell Computer announced that it
would market servers containing AMD Opteron processors.
In 2006 AMD also moved into the graphics-processing field
by merging with ATI, a leading maker of video cards, at
a cost of $5.4 billion. Meanwhile AMD also continues to
be a leading maker of flash memory, closely collaborat-
ing with Japan’s Fujitsu Corporation (see flash drive). In
2008 AMD continued its aggressive pursuit of market share,
announcing a variety of products, including a quad-core
Opteron chip that it expects to catch up to if not surpass
similar chips from Intel.

�        Advanced Micro Devices (AMD)

Further Reading
AMD Web site. Available online. URL: http://www.amd.com/us-

en/. Accessed April 10, 2007.
Rodengen, Jeffrey L. The Spirit of AMD: Advanced Micro Devices. Ft.

Lauderdale, Fla.: Write Stuff Enterprises, 1998.
Tom’s Hardware [CPU articles and charts]. Available online. URL:

http://www.tomshardware.com/find_by_topic/cpu.html.
Accessed April 10, 2007.

advertising, online  See online advertising.

agent software  See software agent.

AI  See artificial intelligence.

Aiken, Howard
(1900–1973)
American
Electrical Engineer

Howard Hathaway Aiken was a pioneer in the development
of automatic calculating machines. Born on March 8, 1900,
in Hoboken, New Jersey, he grew up in Indianapolis, Indi-
ana, where he pursued his interest in electrical engineering
by working at a utility company while in high school. He
earned a B.A. in electrical engineering in 1923 at the Uni-
versity of Wisconsin.

By 1935, Aiken was involved in theoretical work on
electrical conduction that required laborious calculation.
Inspired by work a hundred years earlier (see Babbage,
Charles), Aiken began to investigate the possibility of build-
ing a large-scale, programmable, automatic computing device
(see calculator). As a doctoral student at Harvard, Aiken
aroused interest in his project, particularly from Thomas
Watson, Sr., head of International Business Machines (IBM).
In 1939, IBM agreed to underwrite the building of Aiken’s
first calculator, the Automatic Sequence Controlled Calcula-
tor, which became known as the Harvard Mark I.

Mark I and Its Progeny
Like Babbage, Aiken aimed for a general-purpose program-
mable machine rather than an assembly of special-pur-
pose arithmetic units. Unlike Babbage, Aiken had access
to a variety of tested, reliable components, including card
punches, readers, and electric typewriters from IBM and
the mechanical electromagnetic relays used for automatic
switching in the telephone industry. His machine used dec-
imal numbers (23 digits and a sign) rather than the binary
numbers of the majority of later computers. Sixty registers
held whatever constant data numbers were needed to solve
a particular problem. The operator turned a rotary dial to
enter each digit of each number. Variable data and program
instructions were entered via punched paper tape. Calcula-
tions had to be broken down into specific instructions simi-

lar to those in later low-level programming languages such
as “store this number in this register” or “add this number
to the number in that register” (see assembler). The results
(usually tables of mathematical function values) could be
printed by an electric typewriter or output on punched
cards. Huge (about 8 feet [2.4 m] high by 51 feet [15.5 m]
long), slow, but reliable, the Mark I worked on a variety
of problems during World War II, ranging from equations
used in lens design and radar to the designing of the implo-
sive core of an atomic bomb.

Aiken completed an improved model, the Mark II, in
1947. The Mark III of 1950 and Mark IV of 1952, however,
were electronic rather than electromechanical, replacing
relays with vacuum tubes.

Compared to later computers such as the ENIAC and
UNIVAC, the sequential calculator, as its name suggests,
could only perform operations in the order specified. Any
looping had to be done by physically creating a repetitive
tape of instructions. (After all, the program as a whole was
not stored in any sort of memory, and so previous instruc-
tions could not be reaccessed.) Although Aiken’s machines
soon slipped out of the mainstream of computer develop-
ment, they did include the modern feature of parallel pro-
cessing, because different calculation units could work on
different instructions at the same time. Further, Aiken rec-
ognized the value of maintaining a library of frequently
needed routines that could be reused in new programs—
another fundamental of modern software engineering.

Aiken’s work demonstrated the value of large-scale auto-
matic computation and the use of reliable, available tech-
nology. Computer pioneers from around the world came to
Aiken’s Harvard computation lab to debate many issues that
would become staples of the new discipline of computer
science. The recipient of many awards including the Edison
Medal of the IEEE and the Franklin Institute’s John Price
Award, Howard Aiken died on March 14, 1973, in St. Louis,
Missouri.

Further Reading
Cohen, I. B. Howard Aiken: Portrait of a Computer Pioneer. Cam-

bridge, Mass.: MIT Press, 1999.
Cohen, I. B., R. V. D. Campbell, and G. Welch, eds. Makin’ Num-

bers: Howard Aiken and the Computer. Cambridge, Mass.: MIT
Press, 1999.

Ajax  (Asynchronous JavaScript and XML)
With the tremendous growth in Web usage comes a chal-
lenge to deliver Web-page content more efficiently and with
greater flexibility. This is desirable to serve adequately the
many users who still rely on relatively low-speed dial-up
Internet connections and to reduce the demand on Web
servers. Ajax (asynchronous JavaScript and XML) takes
advantage of several emerging Web-development technolo-
gies to allow Web pages to interact with users while keep-
ing the amount of data to be transmitted to a minimum.

In keeping with modern Web-design principles, the
organization of the Web page is managed by coding in
XHTML, a dialect of HTML that uses the stricter rules and

Ajax        �

grammar of the data-description markup language XML
(see html, dhtml, and xhtml and xml). Alternatively,
data can be stored directly in XML. A structure called
the DOM (Document Object Model; see dom) is used to
request data from the server, which is accessed through an
object called httpRequest. The “presentational” information
(regarding such matters as fonts, font sizes and styles, justi-
fication of paragraphs, and so on) is generally incorporated
in an associated cascading style sheet (see cascading style
sheets). Behavior such as the presentation and processing
of forms or user controls is usually handled by a scripting
language (for example, see JavaScript). Ajax techniques tie
these forms of processing together so that only the part of
the Web page affected by current user activity needs to be
updated. Only a small amount of data needs to be received
from the server, while most of the HTML code needed to
update the page is generated on the client side—that is, in
the Web browser. Besides making Web pages more flexible
and interactive, Ajax also makes it much easier to develop
more elaborate applications, even delivering fully functional
applications such as word processing and spreadsheets over
the Web (see application service provider).

Some critics of Ajax have decried its reliance on Java
Script, arguing that the language has a hard-to-use syntax
similar to the C language and poorly implements objects
(see object-oriented programming). There is also a need
to standardize behavior across the popular Web browsers.
Nevertheless, Ajax has rapidly caught on in the Web devel-
opment community, filling bookstore shelves with books
on applying Ajax techniques to a variety of other languages
(see, for example, php).

Ajax can be simplified by providing a framework of
objects and methods that the programmer can use to set up
and manage the connections between server and browser.
Some frameworks simply provide a set of data structures
and functions (see application program interface), while
others include Ajax-enabled user interface components such
as buttons or window tabs. Ajax frameworks also vary in

how much of the processing is done on the server and how
much is done on the client (browser) side. Ajax frameworks
are most commonly used with JavaScript, but also exist for
Java (Google Web Toolkit), PHP, C++, and Python as well as
other scripting languages. An interesting example is Flap-
jax, a project developed by researchers at Brown University.
Flapjax is a complete high-level programming language that
uses the same syntax as the popular JavaScript but hides
the messy details of sharing and updating data between cli-
ent and server.

Drawbacks and Challenges
By their very nature, Ajax-delivered pages behave differ-
ently from conventional Web pages. Because the updated
page is not downloaded as such from the server, the
browser cannot record it in its “history” and allow the
user to click the “back” button to return to a previous
page. Mechanisms for counting the number of page views
can also fail. As a workaround, programmers have some-
times created “invisible” pages that are used to make the
desired history entries. Another problem is that since con-
tent manipulated using Ajax is not stored in discrete pages
with identifiable URLs, conventional search engines can-
not read and index it, so a copy of the data must be pro-
vided on a conventional page for indexing. The extent
to which XML should be used in place of more compact
data representations is also a concern for many devel-
opers. Finally, accessibility tools (see disabled persons
and computers) often do not work with Ajax-delivered
content, so an alternative form must often be provided to
comply with accessibility guidelines or regulations.

Despite these concerns, Ajax is in widespread use and
can be seen in action in many popular Web sites, including
Google Maps and the photo-sharing site Flickr.com.

Further Reading
Ajaxian [news and resources for Ajax developers]. Available

online. URL: http://ajaxian.com/. Accessed April 10, 2007.
Crane, David, Eric Pascarello, and Darren James. Ajax in Action.

Greenwich, Conn.: Manning Publications, 2006.
“Google Web Toolkit: Build AJAX Apps in the Java Language.”

Available online. URL: http://code.google.com/webtoolkit/.
Accessed April 10, 2007.

Holzner, Steve. Ajax for Dummies. Hoboken, N.J.: Wiley, 2006.
Jacobs, Sas. Beginning XML with DOM and Ajax: From Novice to

Professional. Berkeley, Calif.: Apress, 2006.

Algol
The 1950s and early 1960s saw the emergence of two high-
level computer languages into widespread use. The first was
designed to be an efficient language for performing scien-
tific calculations (see fortran). The second was designed
for business applications, with an emphasis on data pro-
cessing (see cobol). However many programs continued to
be coded in low-level languages (see assembler) designed
to take advantages of the hardware features of particular
machines.

In order to be able to easily express and share meth-
ods of calculation (see algorithm), leading programmers

Ajax is a way to quickly and efficiently update dynamic Web
pages—formatting is separate from content, making it easy to
revise the latter.

�        Algol

began to seek a “universal” programming language that
was not designed for a particular application or hardware
platform. By 1957, the German GAMM (Gesellschaft für
angewandte Mathematik und Mechanik) and the American
ACM (Association for Computing Machinery) had joined
forces to develop the specifications for such a language. The
result became known as the Zurich Report or Algol-58, and
it was refined into the first widespread implementation of
the language, Algol-60.

Language Features
Algol is a block-structured, procedural language. Each vari-
able is declared to belong to one of a small number of kinds
of data including integer, real number (see data types),
or a series of values of either type (see array). While the
number of types is limited and there is no facility for defin-
ing new types, the compiler’s type checking (making sure a
data item matches the variable’s declared type) introduced a
level of security not found in most earlier languages.

An Algol program can contain a number of separate
procedures or incorporate externally defined procedures
(see library, program), and the variables with the same
name in different procedure blocks do not interfere with
one another. A procedure can call itself (see recursion).
Standard control structures (see branching statements
and loop) were provided.

The following simple Algol program stores the numbers
from 1 to 10 in an array while adding them up, then prints
the total:

begin
integer array ints[1:10];
integer counter, total;
total := 0;
for counter :=1 step 1 until counter > 10
do

begin
ints [counter] := counter;
total := total + ints[counter];

end;
printstring “The total is:”;
printint (total);
end

Algol’s Legacy
The revision that became known as Algol-68 expanded
the variety of data types (including the addition of bool-
ean, or true/false values) and added user-defined types
and “structs” (records containing fields of different types
of data). Pointers (references to values) were also imple-
mented, and flexibility was added to the parameters that
could be passed to and from procedures.

Although Algol was used as a production language in
some computer centers (particularly in Europe), its rela-
tive complexity and unfamiliarity impeded its acceptance,
as did the widespread corporate backing for the rival lan-
guages FORTRAN and especially COBOL. Algol achieved
its greatest success in two respects: for a time it became
the language of choice for describing new algorithms for

computer scientists, and its structural features would be
adopted in the new procedural languages that emerged in
the 1970s (see Pascal and c).

Further Reading
“Algol 68 Home Page.” URL: http://www.algol68.org. Accessed

April 10, 2007.
Backus, J. W., and others. “Revised Report on the Algorithmic Lan-

guage Algol 60.” Originally published in Numerische Mathema-
tik, the Communications of the ACM, and the Journal of the British
Computer Society. Available online. URL: http://www.masswerk.
at/algol60/report.htm. Accessed April 10, 2007.

algorithm
When people think of computers, they usually think of
silicon chips and circuit boards. Moving from relays to
vacuum tubes to transistors to integrated circuits has
vastly increased the power and speed of computers, but
the essential idea behind the work computers do remains
the algorithm. An algorithm is a reliable, definable proce-
dure for solving a problem. The idea of the algorithm goes
back to the beginnings of mathematics and elementary
school students are usually taught a variety of algorithms.
For example, the procedure for long division by succes-
sive division, subtraction, and attaching the next digit is
an algorithm. Since a bona fide algorithm is guaranteed to
work given the specified type of data and the rote following
of a series of steps, the algorithmic approach is naturally
suited to mechanical computation.

Algorithms in Computer Science
Just as a cook learns both general techniques such as how
to sauté or how to reduce a sauce and a repertoire of specific
recipes, a student of computer science learns both general
problem-solving principles and the details of common algo-
rithms. These include a variety of algorithms for organizing
data (see sorting and searching), for numeric problems
(such as generating random numbers or finding primes),
and for the manipulation of data structures (see list pro-
cessing and queue).

A working programmer faced with a new task first tries
to think of familiar algorithms that might be applicable to
the current problem, perhaps with some adaptation. For
example, since a variety of well-tested and well-understood
sorting algorithms have been developed, a programmer is
likely to apply an existing algorithm to a sorting problem
rather than attempt to come up with something entirely
new. Indeed, for most widely used programming languages
there are packages of modules or procedures that imple-
ment commonly needed data structures and algorithms (see
library, program).

If a problem requires the development of a new algo-
rithm, the designer will first attempt to determine whether
the problem can, at least in theory, be solved (see comput-
ability and complexity). Some kinds of problems have
been shown to have no guaranteed answer. If a new algo-
rithm seems feasible, principles found to be effective in the
past will be employed, such as breaking complex problems

algorithm        �

down into component parts or building up from the sim-
plest case to generate a solution (see recursion). For exam-
ple, the merge-sort algorithm divides the data to be sorted
into successively smaller portions until they are sorted, and
then merges the sorted portions back together.

Another important aspect of algorithm design is choosing
an appropriate way to organize the data (see data struc-
tures). For example, a sorting algorithm that uses a branch-
ing (tree) structure would probably use a data structure that
implements the nodes of a tree and the operations for adding,
deleting, or moving them (see class).

Once the new algorithm has been outlined (see pseudo-
code), it is often desirable to demonstrate that it will work
for any suitable data. Mathematical techniques such as the
finding and proving of loop invariants (where a true asser-
tion remains true after the loop terminates) can be used to
demonstrate the correctness of the implementation of the
algorithm.

Practical Considerations
It is not enough that an algorithm be reliable and cor-
rect, it must also be accurate and efficient enough for its
intended use. A numerical algorithm that accumulates too
much error through rounding or truncation of intermediate
results may not be accurate enough for a scientific applica-
tion. An algorithm that works by successive approximation
or convergence on an answer may require too many itera-
tions even for today’s fast computers, or may consume too
much of other computing resources such as memory. On
the other hand, as computers become more and more pow-
erful and processors are combined to create more power-
ful supercomputers (see supercomputer and concurrent
programming), algorithms that were previously consid-
ered impracticable might be reconsidered. Code profiling
(analysis of which program statements are being executed
the most frequently) and techniques for creating more effi-
cient code can help in some cases. It is also necessary to
keep in mind special cases where an otherwise efficient
algorithm becomes much less efficient (for example, a tree
sort may work well for random data but will become badly
unbalanced and slow when dealing with data that is already
sorted or mostly sorted).

Sometimes an exact solution cannot be mathematically
guaranteed or would take too much time and resources to
calculate, but an approximate solution is acceptable. A so-
called “greedy algorithm” can proceed in stages, testing at
each stage whether the solution is “good enough.” Another
approach is to use an algorithm that can produce a rea-
sonable if not optimal solution. For example, if a group of
tasks must be apportioned among several people (or com-
puters) so that all tasks are completed in the shortest pos-
sible time, the time needed to find an exact solution rises
exponentially with the number of workers and tasks. But
an algorithm that first sorts the tasks by decreasing length
and then distributes them among the workers by “dealing”
them one at a time like cards at a bridge table will, as dem-
onstrated by Ron Graham, give an allocation guaranteed to
be within 4/3 of the optimal result—quite suitable for most
applications. (A procedure that can produce a practical,

though not perfect solution is actually not an algorithm but
a heuristic.)

An interesting approach to optimizing the solution to
a problem is allowing a number of separate programs to
“compete,” with those showing the best performance sur-
viving and exchanging pieces of code (“genetic material”)
with other successful programs (see genetic algorithms).
This of course mimics evolution by natural selection in the
biological world.

Further Reading
Berlinksi, David. The Advent of the Algorithm: The Idea That Rules

the World. New York: Harcourt, 2000.
Cormen, T. H., C. E. Leiserson, R. L. Rivest, and Clifford Stein.

Introduction to Algorithms. 2nd ed. Cambridge, Mass.: MIT
Press, 2001.

Knuth, Donald E. The Art of Computer Programming. Vol. 1: Funda-
mental Algorithms. 3rd ed. Reading, Mass.: Addison-Wesley,
1997. Vol. 2: Seminumerical Algorithms. 3rd ed. Reading, Mass.:
Addison-Wesley, 1997. Vol. 3: Searching and Sorting. 2nd ed.
Reading, Mass.: Addison-Wesley, 1998.

ALU  See arithmetic logic unit.

Amazon.com
Beginning modestly in 1995 as an online bookstore, Ama-
zon.com became one of the first success stories of the early
Internet economy (see also e-commerce).

Named for the world’s largest river, Amazon.com was
the brainchild of entrepreneur Jeffrey Bezos (see Bezos,
Jeffrey P.). Like a number of other entrepreneurs of the
early 1990s, Bezos had been searching for a way to market
to the growing number of people who were going online.
He soon decided that books were a good first product, since
they were popular, nonperishable, relatively compact, and
easy to ship.

Several million books are in print at any one time,
with about 275,000 titles or editions added in 2007 in
the United States alone. Traditional “brick and mortar”
(physical) bookstores might carry a few thousand titles
up to perhaps 200,000 for the largest chains. Bookstores
in turn stock their shelves mainly through major book
distributors that serve as intermediaries between publish-
ers and the public.

For an online bookstore such as Amazon.com, however,
the number of titles that can be made available is limited
only by the amount of warehouse space the store is willing
to maintain—and no intermediary between publisher and
bookseller is needed. From the start, Amazon.com’s busi-
ness model has capitalized on this potential for variety and
the ability to serve almost any niche interest. Over the years
the company’s offerings have expanded beyond books to
34 different categories of merchandise, including software,
music, video, electronics, apparel, home furnishings, and
even nonperishable gourmet food and groceries. (Amazon.
com also entered the online auction market, but remains a
distant runner-up to market leader eBay).

�        ALU

Expansion and Profitability
Because of its desire to build a very diverse product line,
Amazon.com, unusually for a business startup, did not
expect to become profitable for about five years. The grow-
ing revenues were largely poured back into expansion.
In the heated atmosphere of the Internet boom of the
late 1990s, many other Internet-based businesses echoed
that philosophy, and many went out of business follow-
ing the bursting of the so-called dot-com bubble of the
early 2000s. Some analysts questioned whether even the
hugely popular Amazon.com would ever be able to con-
vert its business volume into an operating profit. How-
ever, the company achieved its first profitable year in 2003
(with a modest $35 million surplus). Since then growth
has remained steady and generally impressive: In 2005,
Amazon.com earned $8.49 billion revenues with a net
income of $359 million. By then the company had about
12,000 employees and had been added to the S&P 500
stock index.

In 2006 the company maintained its strategy of invest-
ing in innovation rather than focusing on short-term prof-
its. Its latest initiatives include selling digital versions of
books (e-books) and magazine articles, new arrangements
to sell video content, and even a venture into moviemaking.
By year end, annual revenue had increased to $10.7 billion.

In November 2007 Amazon announced the Kindle, a
book reader (see e-books and digital libraries) with a
sharp “paper-like” display. In addition to books, the Kindle
can also subscribe to and download magazines, content
from newspaper Web sites, and even blogs.

As part of its expansion strategy, Amazon.com has
acquired other online bookstore sites including Borders.com
and Waldenbooks.com. The company has also expanded
geographically with retail operations in Canada, the United
Kingdom, France, Germany, Japan, and China.

Amazon.com has kept a tight rein on its operations even
while continually expanding. The company’s leading mar-
ket position enables it to get favorable terms from publishers
and manufacturers. A high degree of warehouse automation
and an efficient procurement system keep stock moving
quickly rather than taking up space on the shelves.

Information-Based Strategies
Amazon.com has skillfully taken advantage of information
technology to expand its capabilities and offerings. Exam-
ples of such efforts include new search mechanisms, cul-
tivation of customer relationships, and the development of
new ways for users to sell their own goods.

Amazon’s “Search Inside the Book” feature is a good
example of leveraging search technology to take advantage
of having a growing amount of text online. If the publisher
of a book cooperates, its actual text is made available for
online searching. (The amount of text that can be displayed
is limited to prevent users from being able to read entire
books for free.) Further, one can see a list of books citing
(or being cited by) the current book, providing yet another
way to explore connections between ideas as used by dif-
ferent authors. Obviously for Amazon.com, the ultimate
reason for offering all these useful features is that more

potential customers may be able to find and purchase books
on even the most obscure topics.

Amazon.com’s use of information about customers’
buying histories is based on the idea that the more one
knows about what customers have wanted in the past, the
more effectively they can be marketed to in the future
through customizing their view of the site. Users receive
automatically generated recommendations for books or
other items based on their previous purchases (see also
customer relationship management). There is even a
“plog” or customized Web log that offers postings related
to the user’s interests and allows the user to respond.

There are other ways in which Amazon.com tries to
involve users actively in the marketing process. For exam-
ple, users are encouraged to review books and other prod-
ucts and to create lists that can be shared with other users.
The inclusion of both user and professional reviews in turn
makes it easier for prospective purchasers to determine
whether a given book or other item is suitable. Authors are
given the opportunity through “Amazon Connect” to pro-
vide additional information about their books. Finally, in
late 2005 Amazon replaced an earlier “discussion board”
facility with a wiki system that allows purchasers to cre-
ate or edit an information page for any product (see wikis
and Wikipedia).

The company’s third major means of expansion is to
facilitate small businesses and even individual users in
the marketing of their own goods. Amazon Marketplace,
a service launched in 2001, allows users to sell a variety of
items, with no fees charged unless the item is sold. There
are also many provisions for merchants to set up online
“storefronts” and take advantage of online payment and
other services.

Another aspect of Amazon’s marketing is its referral net-
work. Amazon’s “associates” are independent businesses
that provide links from their own sites to products on Ama-
zon. For example, a seller of crafts supplies might include
on its site links to books on crafting on the Amazon site. In
return, the referring business receives a commission from
Amazon.com.

Although often admired for its successful business plan,
Amazon.com has received criticism from several quar-
ters. Some users have found the company’s customer ser-
vice (which is handled almost entirely by e-mail) to be
unresponsive. Meanwhile local and specialized bookstores,
already suffering in recent years from the competition of
large chains such as Borders and Barnes and Noble, have
seen in Amazon.com another potent threat to the survival
of their business. (The company’s size and economic power
have elicited occasional comparisons with Wal-Mart.)
Finally, Amazon.com has been criticized by some labor
advocates for paying low wages and threatening to termi-
nate workers who sought to unionize.

Further Reading
Amazon.com Web site. Available online. URL: http://www.amazon.

com. Accessed August 28, 2007.
Daisey, Mike. 21 Dog Years: Doing Time @ Amazon.com. New York:

The Free Press, 2002.
Marcus, James. Amazonia. New York: New Press, 2005.

Amazon.com        �

Shanahan, Francis. Amazon.com Mashups. New York: Wrox/Wiley,
2007.

Spector, Robert. Amazon.com: Get Big Fast: Inside the Revolutionary
Business Model That Changed the World. New York: Harper-
Business, 2002.

Amdahl, Gene Myron
(1922– )
American
Inventor, Entrepreneur

Gene Amdahl played a major role in designing and develop-
ing the mainframe computer that dominated data process-
ing through the 1970s (see mainframe). Amdahl was born
on November 16, 1922, in Flandreau, South Dakota. After
having his education interrupted by World War II, Amdahl
received a B.S. from South Dakota State University in 1948
and a Ph.D. in physics at the University of Wisconsin in
1952.

As a graduate student Amdahl had realized that fur-
ther progress in physics and other sciences required better,
faster tools for computing. At the time there were only a few
computers, and the best approach to getting access to sig-
nificant computing power seemed to be to design one’s own
machine. Amdahl designed a computer called the WISC
(Wisconsin Integrally Synchronized Computer). This com-
puter used a sophisticated procedure to break calculations
into parts that could be carried out on separate processors,
making it one of the earliest examples of the parallel com-
puting techniques found in today’s computer architectures.

Designer for IBM
In 1952 Amdahl went to work for IBM, which had commit-
ted itself to dominating the new data processing industry.
Amdahl worked with the team that eventually designed the
IBM 704. The 704 improved upon the 701, the company’s
first successful mainframe, by adding many new internal
programming instructions, including the ability to per-
form floating point calculations (involving numbers that
have decimal points). The machine also included a fast,
high-capacity magnetic core memory that let the machine
retrieve data more quickly during calculations. In Novem-
ber 1953 Amdahl became the chief project engineer for
the 704 and then helped design the IBM 709, which was
designed especially for scientific applications.

When IBM proposed extending the technology by build-
ing a powerful new scientific computer called STRETCH,
Amdahl eagerly applied to head the new project. However,
he ended up on the losing side of a corporate power strug-
gle, and did not receive the post. He left IBM at the end of
1955.

In 1960 Amdahl rejoined IBM, where he was soon
involved in several design projects. The one with the most
lasting importance was the IBM System/360, which would
become the most ubiquitous and successful mainframe com-
puter of all time. In this project Amdahl further refined his
ideas about making a computer’s central processing unit
more efficient. He designed logic circuits that enabled the

processor to analyze the instructions waiting to be executed
(the “pipeline”) and determine which instructions could be
executed immediately and which would have to wait for the
results of other instructions. He also used a cache, or special
memory area, in which the instructions that would be needed
next could be stored ahead of time so they could be retrieved
immediately when needed. Today’s desktop PCs use these
same ideas to get the most out of their chips’ capabilities.

Amdahl also made important contributions to the
further development of parallel processing. Amdahl cre-
ated a formula called Amdahl’s law that basically says that
the advantage gained from using more processors gradu-
ally declines as more processor are added. The amount of
improvement is also proportional to how much of the cal-
culation can be broken down into parts that can be run in
parallel. As a result, some kinds of programs can run much
faster with several processors being used simultaneously,
while other programs may show little improvement.

In the mid-1960s Amdahl helped establish IBM’s
Advanced Computing Systems Laboratory in Menlo Park,
California, which he directed. However, he became increas-
ingly frustrated with what he thought was IBM’s too rigid
approach to designing and marketing computers. He
decided to leave IBM again and, this time, challenge it in
the marketplace.

Creator of “clones”
Amdahl resolved to make computers that were more power-
ful than IBM’s machines, but that would be “plug compati-
ble” with them, allowing them to use existing hardware and
software. To gain an edge over the computer giant, Amdahl
was able to take advantage of the early developments in
integrated electronics to put more circuits on a chip with-
out making the chips too small, and thus too crowded for
placing the transistors.

Thanks to the use of larger scale circuit integration,
Amdahl could sell machines with superior technology to
that of the IBM 360 or even the new IBM 370, and at a
lower price. IBM responded belatedly to the competition,
making more compact and faster processors, but Amdahl
met each new IBM product with a faster, cheaper alterna-
tive. However, IBM also countered by using a sales tech-
nique that opponents called FUD (fear, uncertainty, and
doubt). IBM salespersons promised customers that IBM
would soon be coming out with much more powerful and
economical alternatives to Amdahl’s machines. As a result,
many would-be customers were persuaded to postpone pur-
chasing decisions and stay with IBM. Amdahl Corporation
began to falter, and Gene Amdahl gradually sold his stock
and left the company in 1980.

Amdahl then tried to repeat his success by starting a
new company called Trilogy. The company promised
to build much faster and cheaper computers than those
offered by IBM or Amdahl. He believed he could accomplish
this by using the new, very-large-scale integrated silicon
wafer technology in which circuits were deposited in layers
on a single chip rather than being distributed on separate
chips on a printed circuit board. But the problem of dealing
with the electrical characteristics of such dense circuitry,

10        Amdahl, Gene Myron

as well as some design errors, somewhat crippled the new
computer design. Amdahl was forced to repeatedly delay
the introduction of the new machine, and Trilogy failed in
the marketplace.

Amdahl’s achievements could not be overshadowed by
the failures of his later career. He has received many indus-
try awards, including Data Processing Man of the Year by
the Data Processing Management Association (1976), the
Harry Goode Memorial Award from the American Federa-
tion of Information Processing Societies, and the SIGDA Pio-
neering Achievement Award (2007).

Further Reading
“Gene Amdahl.” Available online. URL: http://www.thocp.net/

biographies/amdahl_gene.htm. Accessed April 10, 2007.
Slater, Robert. Portraits in Silicon. Cambridge, Mass.: MIT Press,

1987.

America Online  (AOL)
For millions of PC users in the 1990s, “going online” meant
connecting to America Online. However, this once domi-
nant service provider has had difficulty adapting to the
changing world of the Internet.

By the mid-1980s a growing number of PC users were
starting to go online, mainly dialing up small bulletin board
services. Generally these were run by individuals from their
homes, offering a forum for discussion and a way for users
to upload and download games and other free software and
shareware (see bulletin board systems). However, some
entrepreneurs saw the possibility of creating a commercial
information service that would be interesting and useful
enough that users would pay a monthly subscription fee
for access. Perhaps the first such enterprise to be successful
was Quantum Computer Services, founded by Jim Kimsey
in 1985 and soon joined by another young entrepreneur,
Steve Case. Their strategy was to team up with personal
computer makers such as Commodore, Apple, and IBM to
provide special online services for their users.

In 1989 Quantum Link changed its name to America
Online (AOL). In 1991 Steve Case became CEO, taking over
from the retiring Kimsey. Case’s approach to marketing AOL
was to aim the service at novice PC users who had trouble
mastering arcane DOS (disk operating system) commands
and interacting with text-based bulletin boards and primi-
tive terminal programs. As an alternative, AOL provided a
complete software package that managed the user’s connec-
tion, presented “friendly” graphics, and offered point-and-
click access to features.

Chat rooms and discussion boards were also expanded
and offered in a variety of formats for casual and more for-
mal use. Gaming, too, was a major emphasis of the early
AOL, with some of the first online multiplayer fantasy role-
playing games such as a version of Dungeons and Dragons
called Neverwinter Nights (see online games). A third pop-
ular application has been instant messaging (IM), including
a feature that allowed users to set up “buddy lists” of their
friends and keep track of when they were online (see also
texting and instant messaging).

Internet Challenge
By 1996 the World Wide Web was becoming popular (see
World Wide Web). Rather than signing up with a proprie-
tary service such as AOL, users could simply get an account
with a lower-cost direct-connection service (see Internet
service provider) and then use a Web browser such as
Netscape to access information and services. AOL was slow
in adapting to the growing use of the Internet. At first, the
service provided only limited access to the Web (and only
through its proprietary software). Gradually, however, AOL
offered a more seamless Web experience, allowing users to
run their own browsers and other software together with
the proprietary interface. Also, responding to competition,
AOL replaced its hourly rates with a flat monthly fee ($19.95
at first).

Overall, AOL increasingly struggled with trying to ful-
fill two distinct roles: Internet access provider and content
provider. By the late 1990s AOL’s monthly rates were higher
than those of “no frills” access providers such as NetZero.
AOL tried to compensate for this by offering integration of
services (such as e-mail, chat, and instant messaging) and
news and other content not available on the open Internet.

AOL also tried to shore up its user base with aggressive
marketing to users who wanted to go online but were not
sure how to do so. Especially during the late 1990s, AOL
was able to swell its user rolls to nearly 30 million, largely
by providing millions of free CDs (such as in magazine
inserts) that included a setup program and up to a month of
free service. But while it was easy to get started with AOL,
some users began to complain that the service would keep
billing them even after they had repeatedly attempted to
cancel it. Meanwhile, AOL users got little respect from the
more sophisticated inhabitants of cyberspace, who often
complained that the clueless “newbies” were cluttering
newsgroups and chat rooms.

In 2000 AOL and Time Warner merged. At the time, the
deal was hailed as one of the greatest mergers in corporate

America Online (AOL) was a major online portal in the 1990s,
but has faced challenges adapting to the modern world of the
Web.  (Screen image credit: AOL)

America Online        11

history, bringing together one of the foremost Internet com-
panies with one of the biggest traditional media companies.
The hope was that the new $350 billion company would
be able to leverage its huge subscriber base and rich media
resources to dominate the online world.

From Service to Content Provider
By the 2000s, however, an increasing number of people
were switching from dial-up to high-speed broadband Inter-
net access (see broadband) rather than subscribing to ser-
vices such as AOL simply to get online. This trend and the
overall decline in the Internet economy early in the decade
(the “dot-bust”) contributed to a record loss of $99 billion
for the combined company in 2002. In a shakeup, Time-
Warner dropped “AOL” from its name, and Steve Case was
replaced as executive chairman. The company increasingly
began to shift its focus to providing content and services
that would attract people who were already online, with
revenue coming from advertising instead of subscriptions.

In October 2006 the AOL division of Time-Warner
(which by then had dropped the full name America Online)
announced that it would provide a new interface and soft-
ware optimized for broadband users. AOL’s OpenRide
desktop presents users with multiple windows for e-mail,
instant messaging, Web browsing, and media (video and
music), with other free services available as well. These
offerings are designed to compete in a marketplace where
the company faces stiff competition from other major Inter-
net presences who have been using the advertising-based
model for years (see Yahoo! and Google).

Further Reading
AOL Web site. Available online. URL: http://www.aol.com.

Accessed August 28, 2007.
Kaufeld, John. AOL for Dummies. 2nd ed. Hoboken, N.J.: Wiley,

2004.
Klein, Alec. Stealing Time: Steve Case, Jerry Levin, and the Collapse

of AOL Time Warner. New York: Simon & Schuster, 2003.
Mehta, Stephanie N. “Can AOL Keep Pace?” Fortune, August 21,

2006, p. 29.
Swisher, Kara. AOL.COM: How Steve Case Beat Bill Gates, Nailed the

Netheads, and Made Millions in the War for the Web. New York:
Times Books, 1998.

analog and digital
The word analog (derived from Greek words meaning “by
ratio”) denotes a phenomenon that is continuously vari-
able, such as a sound wave. The word digital, on the other
hand, implies a discrete, exactly countable value that can be
represented as a series of digits (numbers). Sound recording
provides familiar examples of both approaches. Recording
a phonograph record involves electromechanically transfer-
ring a physical signal (the sound wave) into an “analogous”
physical representation (the continuously varying peaks
and dips in the record’s surface). Recording a CD, on the
other hand, involves sampling (measuring) the sound level
at thousands of discrete instances and storing the results in
a physical representation of a numeric format that can in
turn be used to drive the playback device.

Virtually all modern computers depend on the manipu-
lation of discrete signals in one of two states denoted by the
numbers 1 and 0. Whether the 1 indicates the presence of
an electrical charge, a voltage level, a magnetic state, a pulse
of light, or some other phenomenon, at a given point there
is either “something” (1) or “nothing” (0). This is the most
natural way to represent a series of such states.

Digital representation has several advantages over ana-
log. Since computer circuits based on binary logic can be
driven to perform calculations electronically at ever-increas-
ing speeds, even problems where an analog computer better
modeled nature can now be done more efficiently with digi-
tal machines (see analog computer). Data stored in digi-
tized form is not subject to the gradual wear or distortion of
the medium that plagues analog representations such as the
phonograph record. Perhaps most important, because digi-
tal representations are at base simply numbers, an infinite
variety of digital representations can be stored in files and
manipulated, regardless of whether they started as pictures,
music, or text (see digital convergence).

Converting between Analog and
Digital Representations
Because digital devices (particularly computers) are the
mechanism of choice for working with representations of
text, graphics, and sound, a variety of devices are used to
digitize analog inputs so the data can be stored and manip-
ulated. Conceptually, each digitizing device can be thought
of as having three parts: a component that scans the input
and generates an analog signal, a circuit that converts the
analog signal from the input to a digital format, and a com-
ponent that stores the resulting digital data for later use. For
example, in the ubiquitous flatbed scanner a moving head
reads varying light levels on the paper and converts them to

Most natural phenomena such as light or sound intensity are ana-
log values that vary continuously. To convert such measurements
to a digital representation, “snapshots” or sample readings must be
taken at regular intervals. Sampling more frequently gives a more
accurate representation of the original analog data, but at a cost in
memory and processor resources.

12        analog and digital

a varying level of current (see scanner). This analog signal
is in turn converted into a digital reading by an analog-to-
digital converter, which creates numeric information that
represents discrete spots (pixels) representing either levels
of gray or of particular colors. This information is then
written to disk using the formats supported by the operat-
ing system and the software that will manipulate them.

Further Reading
Chalmers, David J. “Analog vs. Digital Computation.” Available

online. URL: http://www.u.arizona.edu/~chalmers/notes/ana-
log.html. Accessed April 10, 2007.

Hoeschele, David F. Analog-to-Digital and Digital-to-Analog Conver-
sion Techniques. 2nd ed. New York: Wiley-Interscience, 1994.

analog computer
Most natural phenomena are analog rather than digital in
nature (see analog and digital). But just as mathematical
laws can describe relationships in nature, these relation-
ships in turn can be used to construct a model in which
natural forces generate mathematical solutions. This is the
key insight that leads to the analog computer.

The simplest analog computers use physical components
that model geometric ratios. The earliest known analog
computing device is the Antikythera Mechanism. Con-
structed by an unknown scientist on the island of Rhodes
around 87 b.c., this device used a precisely crafted differen-
tial gear mechanism to mechanically calculate the interval
between new moons (the synodic month). (Interestingly,
the differential gear would not be rediscovered until 1877.)

Another analog computer, the slide rule, became the
constant companion of scientists, engineers, and students

until it was replaced by electronic calculators in the 1970s.
Invented in simple form in the 17th century, the slide rule’s
movable parts are marked in logarithmic proportions,
allowing for quick multiplication, division, the extraction
of square roots, and sometimes the calculation of trigono-
metric functions.

The next insight involved building analog devices that
set up dynamic relationships between mechanical move-
ments. In the late 19th century two British scientists, James
Thomson and his brother Sir William Thomson (later Lord
Kelvin) developed the mechanical integrator, a device
that could solve differential equations. An important new
principle used in this device is the closed feedback loop,
where the output of the integrator is fed back as a new
set of inputs. This allowed for the gradual summation or
integration of an equation’s variables. In 1931, Vannevar
Bush completed a more complex machine that he called a
“differential analyzer.” Consisting of six mechanical inte-
grators using specially shaped wheels, disks, and servo-
mechanisms, the differential analyzer could solve equations
in up to six independent variables. As the usefulness and
applicability of the device became known, it was quickly
replicated in various forms in scientific, engineering, and
military institutions.

These early forms of analog computer are based on fixed
geometrical ratios. However, most phenomena that scien-
tists and engineers are concerned with, such as aerodynam-
ics, fluid dynamics, or the flow of electrons in a circuit,
involve a mathematical relationship between forces where
the output changes smoothly as the inputs are changed. The
“dynamic” analog computer of the mid-20th century took
advantage of such force relationships to construct devices
where input forces represent variables in the equation, and

Converting analog data to digital involves several steps. A sensor (such as the CCD, or charge-coupled device in a digital camera) creates
a varying electrical current. An amplifier can strengthen this signal to make it easier to process, and filters can eliminate spurious spikes or
“noise.” The “conditioned” signal is then fed to the analog-to-digital (A/D) converter, which produces numeric data that is usually stored in a
memory buffer from which it can be processed and stored by the controlling program.

analog computer        13

nature itself “solves” the equation by producing a resulting
output force.

In the 1930s, the growing use of electronic circuits
encouraged the use of the flow of electrons rather than
mechanical force as a source for analog computation. The
key circuit is called an operational amplifier. It generates
a highly amplified output signal of opposite polarity to the
input, over a wide range of frequencies. By using compo-
nents such as potentiometers and feedback capacitors, an
analog computer can be programmed to set up a circuit in
which the laws of electronics manipulate the input voltages
in the same way the equation to be solved manipulates its
variables. The results of the calculation are then read as a
series of voltage values in the final output.

Starting in the 1950s, a number of companies mar-
keted large electronic analog computers that contained
many separate computing units that could be harnessed
together to provide “real time” calculations in which the
results could be generated at the same rate as the actual
phenomena being simulated. In the early 1960s, NASA set
up training simulations for astronauts using analog real-
time simulations that were still beyond the capability of
digital computers.

Gradually, however, the use of faster processors and
larger amounts of memory enabled the digital computer to

surpass its analog counterpart even in the scientific pro-
gramming and simulations arena. In the 1970s, some hybrid
machines combined the easy programmability of a digital
“front end” with analog computation, but by the end of that
decade the digital computer had rendered analog computers
obsolete.

Further Reading
“Analog Computers.” Computer Museum, University of Amster-

dam. Available online. URL: http://www.science.uva.n/
museum/AnalogComputers.html. Accessed April 18, 2007.

Hoeschele, David F., Jr. Analog-to-Digital and Digital-to-Analog
Conversion Techniques. 2nd ed. New York: John Wiley, 1994.

Vassos, Basil H., and Galen Ewing, eds. Analog and Computer Elec-
tronics for Scientists. 4th ed. New York: John Wiley, 1993.

Andreessen, Marc
(1971– )
American
Entrepreneur, Programmer

Marc Andreessen brought the World Wide Web and its
wealth of information, graphics, and services to the desk-
top, setting the stage for the first “e-commerce” revolution
of the later 1990s. As founder of Netscape, Andreessen also

Completed in 1931, Vannevar Bush’s Differential Analyzer was a triumph of analog computing. The device could solve equations with up to
six independent values.  (MIT Museum)

14        Andreessen, Marc

created the first big “dot-com,” or company doing business
on the Internet.

Born on July 9, 1971, in New Lisbon, Wisconsin,
Andreessen grew up as part of a generation that would
become familiar with personal computers, computer games,
and graphics. By seventh grade Andreessen had his own PC
and was programming furiously. He then studied computer
science at the University of Illinois at Urbana-Champaign,
where his focus on computing was complemented by a wide-
ranging interest in music, history, literature, and business.

By the early 1990s the World Wide Web (see World
Wide Web and Berners-Lee, Tim) was poised to change
the way information and services were delivered to users.
However, early Web pages generally consisted only of
linked pages of text, without point-and-click navigation or
the graphics and interactive features that adorn Web pages
today.

Andreessen learned about the World Wide Web shortly
after Berners-Lee introduced it in 1991. Andreessen thought
it had great potential, but also believed that there needed
to be better ways for ordinary people to access the new

medium. In 1993, Andreessen, together with colleague Eric
Bina and other helpers at the National Center for Supercom-
puting Applications (NCSA), set to work on what became
known as the Mosaic Web browser. Since their work was
paid for by the government, Mosaic was offered free to
users over the Internet. Mosaic could show pictures as well
as text, and users could follow Web links simply by click-
ing on them with the mouse. The user-friendly program
became immensely popular, with more than 10 million
users by 1995.

After earning a B.S. in computer science, Andreessen left
Mosaic, having battled with its managers over the future of
Web-browsing software. He then met Jim Clark, an older
entrepreneur who had been CEO of Silicon Graphics. They
founded Netscape Corporation in 1994, using $4 million
seed capital provided by Clark.

Andreessen recruited many of his former colleagues at
NCSA to help him write a new Web browser, which became
known as Netscape Navigator. Navigator was faster and
more graphically attractive than Mosaic. Most important,
Netscape added a secure encrypted facility that people could
use to send their credit card numbers to online merchants.
This was part of a two-pronged strategy: First, attract the
lion’s share of Web users to the new browser, and then sell
businesses the software they would need to create effective
Web pages for selling products and services to users.

By the end of 1994 Navigator had gained 70 per-
cent of the Web browser market. Time magazine named
the browser one of the 10 best products of the year, and
Netscape was soon selling custom software to companies
that wanted a presence on the Web. The e-commerce boom
of the later 1990s had begun, and Marc Andreessen was one
of its brightest stars. When Netscape offered its stock to the
public in summer 1995, the company gained a total worth
of $2.3 billion, more than that of many traditional blue-
chip industrial companies. Andreessen’s own shares were
worth $55 million.

Battle with Microsoft
Microsoft (see Microsoft and Gates, Bill) had been slow
to recognize the growing importance of the Web, but by the
mid-1990s Gates had decided that the software giant had to
have a comprehensive “Internet strategy.” In particular, the
company had to win control of the browser market so users
would not turn to “platform independent” software that
could deliver not only information but applications, with-
out requiring the use of Windows at all.

Microsoft responded by creating its own Web browser,
called Internet Explorer. Although technical reviewers gen-
erally considered the Microsoft product to be inferior to
Netscape, it gradually improved. Most significantly, Micro-
soft included Explorer with its new Windows 95 operating
system. This “bundling” meant that PC makers and con-
sumers had little interest in paying for Navigator when they
already had a “free” browser from Microsoft. In response
to this move, Netscape and other Microsoft competitors
helped promote the antitrust case against Microsoft that
would result in 2001 in some of the company’s practices
being declared an unlawful use of monopoly power.

Marc Andreessen, Chairman of Loudcloud, Inc., speaks at Fortune
magazine’s “Leadership in Turbulent Times” conference on Novem-
ber 8, 2001, in New York City.  (Photo by Mario Tama/Getty
Images)

Andreessen, Marc        15

Andreessen tried to respond to Microsoft by focusing
on the added value of his software for Web servers while
making Navigator “open source,” meaning that anyone was
allowed to access and modify the program’s code (see open
source). He hoped that a vigorous community of program-
mers might help keep Navigator technically superior to
Internet Explorer. However, Netscape’s revenues began to
decline steadily. In 1999 America Online (AOL) bought the
company, seeking to add its technical assets and Webcenter
online portal to its own offerings (see America Online).

After a brief stint with AOL as its “principal technical
visionary,” Andreessen decided to start his own company,
called LoudCloud. The company provided Web-site devel-
opment, management, and custom software (including e-
commerce “shopping basket” systems) for corporations that
had large, complex Web sites. However, the company was
not successful; Andreessen sold its Web-site-management
component to Texas-based Electronic Data Systems (EDS)
while retaining its software division under the new name
Opsware. In 2007 Andreessen scored another coup, selling
Opsware to Hewlett-Packard (HP) for $1.6 billion.

In 2007 Andreessen launched Ning, a company that
offers users the ability to add blogs, discussion forums, and
other features to their Web sites, but facing established com-
petitors such as MySpace (see also social networking). In
July 2008 Andresseen joined the board of Facebook.

While the future of his recent ventures remains uncer-
tain, Marc Andreessen’s place as one of the key pioneers of
the Web and e-commerce revolution is assured. His inven-
tiveness, technical insight, and business acumen made him
a model for a new generation of Internet entrepreneurs.
Andreessen was named one of the Top 50 People under the
Age of 40 by Time magazine (1994) and has received the
Computerworld/Smithsonian Award for Leadership (1995)
and the W. Wallace McDowell Award of the IEEE Computer
Society (1997).

Further Reading
Clark, Jim. Netscape Time: The Making of the Billion-Dollar Startup

That Took on Microsoft. New York: St. Martin’s Press, 1999.
Guynn, Jessica. “Andreessen Betting Name on New Ning.” San

Francisco Chronicle, February 27, 2006, p. D1, D4.
Payment, Simone. Marc Andreessen and Jim Clark: The Founders of

Netscape. New York: Rosen Pub. Group, 2006.
Quittner, Joshua, and Michelle Slatala. Speeding the Net: The Inside

Story of Netscape and How It Challenged Microsoft. New York:
Atlantic Monthly Press, 1998.

animation, computer
Ever since the first hand-drawn cartoon features entertained
moviegoers in the 1930s, animation has been an important
part of the popular culture. Traditional animation uses a
series of hand-drawn frames that, when shown in rapid
succession, create the illusion of lifelike movement.

Computer Animation Techniques
The simplest form of computer animation (illustrated in
games such as Pong) involves drawing an object, then eras-
ing it and redrawing it in a different location. A somewhat

more sophisticated approach can create motion in a scene
by displaying a series of pre-drawn images called sprites—
for example, there could be a series of sprites showing a
sword-wielding troll in different positions.

Since there are only a few intermediate images, the use
of sprites doesn’t convey truly lifelike motion. Modern
animation uses a modern version of the traditional drawn
animation technique. The drawings are “keyframes” that
capture significant movements by the characters. The key-
frames are later filled in with transitional frames in a pro-
cess called tweening. Since it is possible to create algorithms
that describe the optimal in-between frames, the advent of
sufficiently powerful computers has made computer anima-
tion both possible and desirable. Today computer animation
is used not only for cartoons but also for video games and
movies. The most striking use of this technique is morph-
ing, where the creation of plausible intermediate images
between two strikingly different faces creates the illusion of
one face being transformed into the other.

Algorithms that can realistically animate people, ani-
mals, and other complex objects require the ability to create
a model that includes the parts of the object that can move
separately (such as a person’s arms and legs). Because the
movement of one part of the model often affects the posi-
tions of other parts, a treelike structure is often used to
describe these relationships. (For example, an elbow moves
an arm, the arm in turn moves the hand, which in turn
moves the fingers). Alternatively, live actors performing a
repertoire of actions or poses can be digitized using wear-
able sensors and then combined to portray situations, such
as in a video game.

Less complex objects (such as clouds or rainfall) can be
treated in a simpler way, as a collection of “particles” that
move together following basic laws of motion and gravity.
Of course when different models come into contact (for
example, a person walking in the rain), the interaction
between the two must also be taken into consideration.

While realism is always desirable, there is inevitably
a tradeoff between the resources available. Computation-
ally intensive physics models might portray a very realistic
spray of water using a high-end graphics workstation, but
simplified models have to be used for a program that runs
on a game console or desktop PC. The key variables are the
frame rate (higher is smoother) and the display resolution.
The amount of available video memory is also a consider-
ation: many desktop PCs sold today have 256MB or more of
video memory.

Applications
Computer animation is used extensively in many fea-
ture films, such as for creating realistic dinosaurs (Juras-
sic Park) or buglike aliens (Starship Troopers). Computer
games combine animation techniques with other tech-
niques (see computer graphics) to provide smooth
action within a vivid 3D landscape. Simpler forms of ani-
mation are now a staple of Web site design, often written
in Java or with the aid of animation scripting programs
such as Adobe Flash.

16        animation, computer

The intensive effort that goes into contemporary com-
puter animation suggests that the ability to fascinate the
human eye that allowed Walt Disney to build an empire is
just as compelling today.

Further Reading
“3-D Animation Workshop.” Available online. URL: http://www.

webreference.com/3d/indexa.html. Accessed April 12, 2007.
Comet, Michael B. “Character Animation: Principles and Prac-

tice.” Available online. URL: http://www.comet-cartoons.
com/toons/3ddocs/charanim. Accessed April 12, 2007.

Hamlin, J. Scott. Effective Web Animation: Advanced Techniques for
the Web. Reading, Mass.: Addison-Wesley, 1999.

O’Rourke, Michael. Principles of Three-Dimensional Computer Ani-
mation: Modeling, Rendering, and Animating with 3D Computer
Graphics. New York: Norton, 1998.

Parent, Rick. Computer Animation: Algorithms and Techniques. San
Francisco: Morgan Kaufmann, 2002.

Shupe, Richard, and Robert Hoekman. Flash 8: Projects for Learn-
ing Animation and Interactivity. Sebastapol, Calif.: O’Reilly
Media, 2006.

anonymity and the Internet
Anonymity, or the ability to communicate without disclos-
ing a verifiable identity, is a consequence of the way most
Internet-based e-mail, chat, or news services were designed
(see e-mail, chat, texting and instant messaging, and
netnews and newgroups). This does not mean that mes-
sages do not have names attached. Rather, the names can
be arbitrarily chosen or pseudonymous, whether reflecting
development of an online persona or the desire to avoid
having to take responsibility for unwanted communications
(see spam).

Advantages
If a person uses a fixed Internet address (see tcp/ip), it may
be possible to eventually discover the person’s location and
even identity. However, messages can be sent through anon-
ymous remailing services where the originating address is
removed. Web browsing can also be done “at arm’s length”
through a proxy server. Such means of anonymity can argu-
ably serve important values, such as allowing persons living
under repressive governments (or who belong to minority
groups) to express themselves more freely precisely because
they cannot be identified. However, such techniques require
some sophistication on the part of the user. With ordinary
users using their service provider accounts directly, gov-
ernments (notably China) have simply demanded that the
user’s identity be turned over when a crime is alleged.

Pseudonymity (the ability to choose names separate
from one’s primary identity) in such venues as chat rooms
or online games can also allow people to experiment with
different identities or roles, perhaps getting a taste of how
members of a different gender or ethnic group are perceived
(see identity in the online world).

Anonymity can also help protect privacy, especially in
commercial transactions. For example, purchasing some-
thing with cash normally requires no disclosure of the pur-
chaser’s identity, address, or other personal information.

Various systems can use secure encryption to create a cash
equivalent in the online world that assures the merchant
of valid payment without disclosing unnecessary informa-
tion about the purchaser (see digital cash). There are also
facilities that allow for essentially anonymous Web brows-
ing, preventing the aggregation or tracking of information
(see cookies).

Problems
The principal problem with anonymity is that it can allow
the user to engage in socially undesirable or even criminal
activity with less fear of being held accountable. The com-
bination of anonymity (or the use of a pseudonym) and the
lack of physical presence seems to embolden some people
to engage in insult or “flaming,” where they might be inhib-
ited in an ordinary social setting. A few services (notably
The WELL) insist that the real identity of all participants
be available even if postings use a pseudonym.

Spam or deceptive e-mail (see phishing and spoof-
ing) takes advantage both of anonymity (making it hard
for authorities to trace) and pseudonymity (the ability
to disguise the site by mimicking a legitimate business).
Anonymity makes downloading or sharing files easier
(see file-sharing and P2P networks), but also makes
it harder for owners of videos, music, or other content to
pursue copyright violations. Because of the prevalence of
fraud and other criminal activity on the Internet, there
have been calls to restrict the ability of online users to
remain anonymous, and some nations such as South Korea
have enacted legislation to that effect. However, civil lib-
ertarians and privacy advocates believe that the impact on
freedom and privacy outweighs any benefits for security
and law enforcement.

The database of Web-site registrants (called Whois)
provides contact information intended to ensure that
someone will be responsible for a given site and be will-
ing to cooperate to fix technical or administrative prob-
lems. At present, Whois information is publicly available.
However, the Internet Corporation for Assigned Names
and Numbers (ICANN) is considering making the contact
information available only to persons who can show a
legitimate need.

Further Reading
Lessig, Lawrence. Code: Version 2.0. New York: Basic Books, 2006.
Rogers, Michael. “Let’s See Some ID, Please: The End of Anonym-

ity on the Internet?” The Practical Futurist (MSNBC), Decem-
ber 13, 2005. Available online. URL: http://www.msnbc.msn.
com/ID/10441443/. Accessed April 10, 2007.

Wallace, Jonathan D. “Nameless in Cyberspace: Anonymity on the
Internet.” CATO Institute Briefing Papers, no. 54, December
8, 1999. Available online. URL: http://www.cato.org/pubs/
briefs/bp54.pdf. Accessed April 10, 2007.

AOL  See America Online.

API  See applications program interface.

API        17

